THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMATH5220 Complex Analysis and Its Applications 2014-2015

Assignment 2

- Due date: 11 Feb, 2015
- Remember to write down your name and student number

1. If $f(z)$ is differentiable at z_{0}, where $z_{0} \neq 0$, show that $f^{\prime}\left(z_{0}\right)$ can be written as

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

or

$$
f^{\prime}\left(z_{0}\right)=\frac{-i}{z_{0}}\left(u_{\theta}+i v_{\theta}\right)
$$

where all partial derivatives are evaluated at $\left(r_{0}, \theta_{0}\right)$.
2. Consider the following function

$$
f(z)=\left\{\begin{array}{clc}
(1+i) \frac{\operatorname{Im}\left(z^{2}\right)}{|z|^{2}} & \text { if } & z \neq 0 \\
0 & \text { if } & z=0
\end{array}\right.
$$

(a) Show that the Cauchy-Riemann equations are satisfied at $z=0$.
(b) Is $f(z)$ differentiable at $z=0$?
3. Find the domains in which the function

$$
f(z)=f(x+i y)=\left|x^{2}-y^{2}\right|+2 i|x y|
$$

is analytic.
4. Evaluate the integral $\int_{\gamma} z^{2} d z$, if
(a) γ is a straight line segment from $z=2$ to $z=2 i$;
(b) γ is the major arc of the the circle $|z|=2$ from $z=2$ to $z=2 i$.
5. Show that if C is the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant. By using $M L$-estimate, show that

$$
\left|\int_{C} \frac{d z}{z^{2}-1}\right| \leq \frac{\pi}{3}
$$

6. If C_{R} is the arc of the circle $|z|=R$ from $z=R$ to $z=-R$ that lies in the upper half plane. By using $M L$-estimate, show that

$$
\left|\int_{C_{R}} \frac{z^{2}}{z^{6}+1} d z\right| \leq \frac{\pi R^{3}}{R^{6}-1}
$$

and hence show that

$$
\lim _{R \rightarrow+\infty} \int_{C_{R}} \frac{z^{2}}{z^{6}+1} d z=0
$$

